One-Pot Base-Promoted Tandem Michael Addition-Intramolecular Aldolization. Stereoselective Synthesis and Reactivity of 2-Hydroxybicyclo[3.2.1]octan-8-ones

Marie-Hélène Filippini, Robert Faure, and Jean Rodriguez*

Laboratoire RéSo, Réactivité en Synthèse Organique, URA 1411, centre de St Jérôme, Boîte D 12, 13397 Marseille Cedex 20, France

Received April 11, 1995*

 α -Substituted cyclopentanones 1 react with α , β -unsaturated aldehydes 2 by a facile base-promoted (K_2CO_3, Cs_2CO_3, DBU) tandem Michael addition-intramolecular aldol cyclication to give, in synthetically useful yields (30-99%), highly substituted, stereodefined and optically active 2-hydroxybicyclo[3.2.1]octan-8-ones 3-19. A generally separable mixture of isomers, in which the one bearing an equatorial hydroxy group predominates, is obtained with simple aldehydes. In the case of prostereogenic Michael acceptors one diastereomer usually prevails from as little as 75% to as much as >97%. This high axial-C-4 stereoselectivity results from a diastereoselective Michael addition and can be easily reversed by simple adaptation of the reaction conditions. The structures of the products rest upon NMR spectroscopy and chemical transformations. The synthetic potential of hydroxybicyclo[3.2.1] octanes is illustrated by transformations of 25-28, especially by their facile conversion to functionalized and stereodefined cycloheptanes 30, 32, 35-42.

Introduction

The stereoselective formation of the bicyclo[3.2.1]octane skeleton has received much attention since this structure represents the basic framework of numerous biologically active natural products.¹ Among the various strategies encountered in the literature, the ring expansion of a [2.2.1] intermediate was one of the first.² The rearrangement of bicyclo[2.2.2]octanes,³ the ring contraction of [3.3.1] derivatives,⁴ the selective fragmentation of bi- and tricyclic intermediates,⁵ and the solvolytic cyclization of functionalized cycloheptenes⁶ have also been used successfully during the syntheses of a number

Mander, L. N. Chem. Rev. 1992, 92, 573. Engler, T. A.; Wei, D. D.;
Letavic, M. A. Tetrahedron Lett. 1993, 34, 1429. Nakajima, H.; Isomi,
K.; Hamasaki, T.; Ichinoe, M. Tetrahedron Lett. 1994, 35, 9597.
(2) Jefford, C. W. Proc. Chem. Soc. 1963, 64. Ghosez, L.; Laroche,
P. Proc. Chem. Soc. 1963, 90. Moore, W. R.; Moser, W. R.; LaPrade, J.
E. J. Org. Chem. 1963, 28, 2200. De Selms, R. C.; Combs, C. M. J.
Org. Chem. 1963, 28, 2200. De Selms, R. C.; Combs, C. M. J.
Org. Chem. 1963, 28, 2200. De Selms, R. C.; Combs, C. M. J.
J.; Stothers, J. B. Can. J. Chem. 1986, 64, 1440. Paquette, L. A.;
Andrews, J. F. P.; Vanucci, C.; Lawhorn, D. E.; Negri, J. T.; Rogers,
R. D. J. Org. Chem. 1992, 57, 3956. Hsu, L. F.; Chang, C. P.; Li, M.
C.; Chang, N. C. J. Org. Chem. 1993, 58, 4756. Djuardi, E.; Bovonsombat, P.; Mc Nelis, E. Tetrahedron 1994, 50, 11793.
(3) Monti, S. A.; Dean, T. R. J. Org. Chem. 1982, 47, 2681. Van
Tamelen, E. E.; Zawacky, S. R.; Russell, R. K.; Carlson, J. G. J. Am.
Chem. Soc. 1983, 105, 142. Uyehara, T.; Osanai, K.; Sugimoto, M.;
Suzuki, I.; Yamanoto, Y. J. Am. Chem. Soc., Chem. Commun. 1994, 621.

Suzuki, I.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 7264. Shanker,
P. S.; Rao, G. S. R. S. J. Chem. Soc., Chem. Commun. 1994, 621.
(4) Kraus, G. A.; Hon, Y. S.; Sy, J. J. Org. Chem. 1986, 51, 2625.
(5) Beames, D. J., Mander, L. N. J. Chem. Soc., Chem. Commun.
1969, 498. Mori, K. Tetrahedron 1971, 27, 4907. Cargill, R. L.; Jackson,
T. E.; Peet, N. P.; Pond, D. M. Acc. Chem. Res. 1974, 7, 106. Ghatak,
U. R.; Alam, S. K.; Chakraborti, P. C.; Ranu, B. C. J. Chem. Soc., Perkin Trans. 1 1976, 1669. Yanagiya, M.; Kaneko, K.; Kaji, T.; Matsumoto,
T. Tetrahedron Lett. 1979, 1761. Barker, A. J.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1983, 1901. Narasaka, K. Shimadzu, H.; Hayashi,
Y. Chem. Lett. 1993, 621. Sagawa, S.: Nagaoka, H.: Yamada, Y. Y. Chem. Lett. 1993, 621. Sagawa, S.; Nagaoka, H.; Yamada, Y. Tetrahedron Lett. 1994, 35, 603. Hadjiarapoglou, L.; de Meijere, A.; Seitz, H. J.; Klein, I.; Spitzner, D. Tetrahedron Lett. 1994, 35, 3269. (6) Cope, A. C.; Nealy, D. L.; Scheiner, P.; Wood, G. J. Am. Chem.

Soc. 1965, 87, 3130 and references cited therein.

of natural compounds. The following general strategies have also been used: the aldol condensation,⁷ the intramolecular Wittig olefination,⁸ the Diels-Alder reaction⁹ or other electrocyclizations.¹⁰ the cobalt catalyzed [2+2+2] cycloaddition¹¹ or the ene-reaction of acetylenic β -keto esters,¹² and the photochemical-induced rearrangement of ethylenic cycloalkanones.¹³ Intramolecular carbon-carbon bond formation¹⁴ including the pinacolic coupling,¹⁵ Michael addition,¹⁶ Reformatsky¹⁷ and Dieckmann condensations,¹⁸ intramolecular radical carbocyclization,¹⁹ and finally the use of organometallic intermediates²⁰ have been used quite often in the preparation of the [3.2.1]octane skeleton, and many interesting synthetic applications are reported. Another approach

(11) Germanas, J.; Aubert, C.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1991, 113, 4006.

(12) Stammler, R.; Malacria, M. Synlett 1994, 92.

(13) Heidbreder, A.; Mattay, J. Tetrahedron Lett. **1992**, 33, 1973. Schultz, A. G.; Green, N. J. J. Am. Chem. Soc. **1992**, 114, 1824.

Freitas, R.; Muñoz Dorado, M.; Toromanoff, E.; Potier, P. Tetrahedron Lett. 1993, 34, 1137.

 [®] Abstract published in Advance ACS Abstracts, September 15, 1995.
 (1) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White C. T. The Total Synthesis of Natural Products; Apsimon, J. W., Ed.; Wiley: New York, 1982, Vol. 5. Hanson, J. R. Terpenoids and Steroids, a Specialist Periodical Report; The Royal Society of Chem-istry: London, 1983; Vol. 12, p 195. Yamamura, S.; Shizuri, Y.; Shigemori, H.; Okuno, Y.; Ohkubo, M. Tetrahedron **1991**, 47, 635. Mander, L. N. Chem. Rev. **1992**, 92, 573. Engler, T. A.; Wei, D. D.;

⁽⁷⁾ Corey, E. J.; Nozoe, S. J. Am. Chem. Soc. 1965, 87, 5728. Burke, S. D.; Murtiashaw, C. W.; Saunders, J. O.; Oplinger, J. A.; Dike, M. S. J. Am. Chem. Soc. **1984**, 106, 4558. Utaka, M.; Fujii, Y.; Takeda, A. Chem. Lett. 1985, 1123. Yamamoto, T.; Eki, T.; Nagumo, S.; Suemune, H.; Sakai, K. Tetrahedron 1992, 48, 4517. Lohray, B. B.; Zimbiniski, R. Tetrahedron Lett. 1990, 31, 7273. Bull, J. R. Synlett 1994, 709.

⁽⁸⁾ Bestmann, H. J.; Schade, G. Tetrahedron Lett. 1982, 23, 3543.

⁽⁸⁾ Bestmann, H. J.; Schade, G. Tetranedron Lett. 1952, 23, 3043.
Dauben, W. G.; Ipaktschi, J. J. Am. Chem. Soc. 1973, 95, 5088.
(9) Schlessinger, R. H.; Wood, J. L.; Poss, A. J.; Nugent, R. A.; Parsons, W. H. J. Org. Chem. 1983, 48, 1147. Rigby, J. H.; Kotnis, A.
S. Tetrahedron Lett. 1987, 28, 4943. Aubert, C.; Gotteland, J. P.; Malacria, M. J. Org. Chem. 1993, 58, 4298.
(10) Büchi, G.; Chu, P. S. Tetrahedron 1981, 37, 4509. Funk, R. L.; Horcher, L. H. M.; Daggett, J. U.; Hansen, M. M. J. Org. Chem. 1983, 48, 2632. Joshi, N. N.; Hoffmann, H. M. R. Tetrahedron Lett. 1986, 47, 687 Mayr. H · Bäuml E · Cibura G. Koschinsky, R. J. Org. Chem.

^{43, 2032.} Joshi, N. N.; Hollmann, H. M. R. Tetrahedron Lett. 1986, 27, 687. Mayr, H.; Bäuml, E.; Cibura, G.; Koschinsky, R. J. Org. Chem.
1992, 57, 768. Markò, I. E.; Seres, P.; Evans, G. R.; Swarbrick, T. M. Tetrahedron Lett. 1993, 34, 7305. Davies, H. M. L.; Peng, Z. Q.; Houser, J. H. Tetrahedron Lett. 1994, 35, 8939. Oh, J.; Lee, J.; Jin, S. J.; Cha, J. K. Tetrahedron Lett. 1994, 35, 3449. Walters, M. A.; Arcand, H. R.; Lawrie, D. J. Tetrahedron Lett. 1995, 36, 23.

Schnitz, A. G.; Green, N. J. J. Am. Chem. Soc. 1992, 114, 1824.
 (14) Bailey, D. M.; Bowers, J. E.; Gutsche, C. D. J. Org. Chem. 1963, 28, 610. Masamune, S. J. Am. Chem. Soc. 1964, 86, 288. Whitesell, J. K.; Matthews, R. S.; Solomon, P. A. Tetrahedron Lett. 1976, 1549.
 Heumann, A.; Krauss, W. Tetrahedron 1978, 34, 405. Wang, P.; Adams, J. J. Am. Chem. Soc. 1994, 116, 3297.
 (15) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S. J. Org. Chem. 1976, 41, 260. Arseniyadis, S.; Yashunsky, D. V.; Pereira de Froitae, B.; Muše Donodo, M.; Tormonoff, F., Patier, P. Tetrahedron

is the α, α' -annelation of ketones by the tandem alkylation-Michael addition of enamines,²¹ which has recently been improved by using the reactivity of nitroallylic esters.22

Bicyclo[3.2.1]octanes can also serve as useful intermediates,²³ in fragmentations leading to cycloheptanes,²⁴ as in the well-known Stork–Landesman procedure,²⁵ which involves a 2-amino-substituted bicyclo[3.2.1]octan-8-one intermediate. More recent examples involving 2-oxy substituted bicyclo[3.2.1]octan-8-ones are the acetalization of cyclopentanones with a carbonyl function at the C-3-position of an α -side chain,²⁶ the preparation of 2-methylcycloheptan-1,5-dione,²⁷ the synthesis of transhydroazulenes,²⁸ and our recent one-pot two-carbon ring expansion of α -carbonyl substituted cyclopentanones.²⁹

(17) Corey, E. J.; Narisada, M.; Hiraoka, T.; Ellison, R. A. J. Am. Chem. Soc. 1970, 92, 396. Ziegler, F. E.; Condon, M. E. J. Org. Chem. 1971, 36, 3707.

(18) Baker, A. J.; Goudie, A. C. J. Chem. Soc., Chem. Commun. 1971, 180. Selvakumar, N.; Rao, G. S. R. S. *Tetrahedron Lett.* 1993, 34, 7789.
 (19) Marinovic, N. N.; Ramanathan, H. *Tetrahedron Lett.* 1983, 24,

 (19) Marinović, N. N.; Ramanathan, H. *Tetrahedron Dett.* 1983, 24, 1871.
 Srikrishna, A.; Hemamalini, P. J. Org. Chem. 1990, 55, 4883.
 Berkowitz, W. F.; Wilson, P. J. J. Org. Chem. 1991, 56, 3097. Curran, D. P.; Morgan, T. M.; Schwartz, C. E.; Snider, B. B.; Dombroski, M. A. J. Am. Chem. Soc. 1991, 113, 6607. Snider, B. B.; Buckman, B. O. J. Org. Chem. 1992, 57, 322. Curran, D. P.; Yoo, B.; Tetrahedron Lett. 1992, 33, 6931. Weinges, K.; Reichert, H.; Huber-Patz, U.; Irngart-Inger, H. Liebigs Ann. Chem. 1993, 4, 403. Ozaki, S.; Horiguchi, I.; Matsushita, H.; Ohmori, H. Tetrahedron Lett. 1994, 35, 725.

(20) Kende, A. S.; Roth, B; Sanfilippo, P. J.; Blacklock, T. J. J. Am. (20) Kende, A. S.; Roth, B; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, 104, 5808. Barbero, A.; Cuadrado, P.; Gonzalez, A. M.; Pulido, F. J.; Rubio, R.; Fleming, I. Tetrahedron Lett. 1992, 35, 5841. Yeh, M. C. P.; Sheu, B. A.; Fu, H. W.; Tau, S. I.; Chuang, L. W. J. Am. Chem. Soc. 1993, 115, 5941. Funk, R. L.; Bolton, G. L.; Brunmond, K. M.; Ellestad, K. E.; Stallman, J. B. J. Am. Chem. Soc. 1993, 115, 7023. Nylund, C. S; Klopp, J. M.; Weinreb, S. M. Tetrahe-dron Lett. 1994, 35, 4287. Toyota, M.; Wada, T.; Nishikawa, Y.; Yanai, K.; Fukumoto, K. Synlett 1994, 597. Toyota, M.; Nishikawa, Y.; Fukumoto, K. Tetrahedron Lett. 1994, 35, 6495.
(21) Nalson B. P.; McFuen J. M.; Lawton B. G. J. Org. Chem. 1969.

(21) Nelson, R. P.; McEuen, J. M.; Lawton, R. G. J. Org. Chem. 1969, 34, 1225. Butkus, E; Bielinyte, B. Prakt. J. Chem., Chem. Ztg. 1992, 334, 285.

(22) Seebach, D.; Missbach, M.; Calderari, G.; Eberle, M. J. Am. Chem. Soc. 1990, 112, 7625. Lapierre, J. M.; Gravel, D. Tetrahedron Lett. 1991, 32, 2319.

(23) For transformations leading to synthetically useful intermediates, see inter alia: Eguchi, S.; Furukawa, Y.; Suzuki, T.; Kondo, K.; Sasaki, T.; Honda, M.; Katayama, C.; Tanaka, J. J. Org. Chem. **1985**, 50, 1895. Suemune, H.; T.; Oda, K.; Sakai, K. Tetrahedron Lett. **1987**, 50, 1895. Suemune, H.; T.; Oda, K.; Sakai, K. Tetrahedron Lett. 1987, 28, 3373. Muir, D. J.; Stothers, J. B. Can. J. Chem. 1993, 71, 1290.
Kelly, D. P.; Aherne, K.; Delgado, F.; Giansiracusa, J. J.; Jensen, W. A.; Karavokiros, K.; Mantello, R. A.; Reum, M. E. J. Am. Chem. Soc. 1993, 115, 12010. Engler, T. A.; Draney, B. W.; Gfesser, G. A. Tetrahedron Lett. 1994, 35, 1661. Chang, C. P.; Hsu, L. F.; Chang, N. C. J. Org. Chem. 1994, 59, 1898. Hayashi, Y.; Ushio, H.; Narasaka, K. Cl. J. (1997). Chem. Lett. 1994, 289. Patel, H. A.; Stothers, J. B.; Thomas, S. E. Can. J. Chem. 1994, 72, 56.

J. Chem. 1994, 72, 56.
(24) (a) Dauben, W. G.; MacFarland, J. W. J. Am. Chem. Soc. 1960, 82, 4245. (b) Grob, A.; Hostynek, J. Helv. Chim. Acta 1963, 46, 2209.
(c) Buchanan, G. L.; Maxwell, C.; Henderson, W. Tetrahedron 1965, 21, 3273. (d) Buchanan, G. L.; McLay, G. W. Tetrahedron 1966, 22, 1521. (e) Buchanan, G. L.; Young, G. A. R. J. Chem. Soc., Chem. Commun. 1971, 643. (f) Chakraborty, R.; Basu, M. K.; Ranu, B. C. Tetrahedron 196. 48, 864. Tetrahedron 1992, 48, 8849.

However, in spite of the synthetic usefulness of this system, few reports deal with the one-pot preparation of these bicyclic compounds from simple intermediates. The high pressure-induced tandem Michael addition-intramolecular aldolization of β -keto esters with α,β unsaturated ketones³⁰ and the annulation of β -keto thiolesters³¹ or β -keto sulfones³² constitute the three major examples.

It is the purpose of this paper to describe, in full detail, the scope and limitations of a new stereoselective onepot access to the valuable 2-hydroxybicyclo[3.2.1]octan-8-one ring system. We also present some aspects of its reactivity for the preparation of stereodefined cycloheptane derivatives. Our approach is based on a one-pot base-promoted tandem Michael addition-intramolecular aldol cyclization of β -dicarbonyl derivatives 1 with α,β unsaturated aldehydes 2. The method allows the preparation of highly substituted, stereodefined, and optically active hydroxybicyclo[3.2.1] octanones with up to five stereogenic centers under extremely simple and very mild conditions (eq 1).³³

1a: $R^1 = R^2 = H$, $R^3 = OMe$ 2a: R4= R5= R6= H $3-19 (Z = COR^3)$ **b**: $R^1 = Me$, $R^2 = H$, $R^3 = OMe$ b: $R^4 = R^6 = H$, $R^5 = Me$ c: $R^4 = R^5 = Me$, $R^6 = H$ c: $R^1 = H$, $R^2 = Me$, $R^3 = OMe$ d: $R^4 = R^5 = H$, $R^6 = Me$ d: $R^1 = H$, $R^2 = Me$, $R^3 = OtBu$ e: $R^1 = H$, $R^2 = Me$, $R^3 = OBn$ e: $R^4 = R^6 = H$, $R^5 = nPr$ f: $R^1 = R^2 = H$, $R^3 = Me$ f: $R^4 = H$, $R^5 = Et$, $R^6 = Me$ g: $R^4 = H$, R^5 , $R^6 = -(CH_2)$ h: $R^4 = R^6 = H$, $R^5 = Ph$ I: $R^4 = R^6 = H$, $R^5 = o$ -tolyl $j: R^4 = R^6 = H, R^5 = furyl$

Results and Discussion

The results of our study on the base-promoted tandem Michael addition-aldol cyclization are reported in Tables 1 and 2. Our one-pot condensative cyclization takes place under very mild conditions by reaction of α -carbonyl substituted cyclopentanones 1a-f with α,β -unsaturated aldehydes 2a-j at room temperature in the presence of 1.5 equiv of base. The reaction is guite general and proceeds smoothly to give, in synthetically useful yields and with good selectivity, 2-hydroxybicyclo[3.2.1]octanones **3–19**. To our knowledge, there is no previous example of the direct construction of a bicyclo[3.2.1]octane, starting with simple α,β -unsaturated aldehydes and α -carbonyl cyclopentanones,³⁴ probably due to the difficulty in

⁽¹⁶⁾ Danishefsky, S.; Koppel, G.; Levine, R. Tetrahedron Lett. 1968, 9, 2257. Nagata, W.; Wakabayashi, T.; Narisada, M.; Hayase, Y.; Kamata, S. J. Am. Chem. Soc. 1971, 93, 5740. Trost, B. M.; Shuey, C. D.; DiNinno, F.; McElvain, S. S., Jr. J. Am. Chem. Soc. 1979, 101, 1284. Pearson, A. J. Tetrahedron Lett. 1980, 21, 3929. For examples using the intramolecular double Michael addition see, Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. Engl. **1993**, 32, 1010. Ghera, E.; Ramesh, N. G.; Laxer, A.; Hassner, A. Tetrahedron Lett. **1995**, 36, 1333.

⁽²⁵⁾ Stork, G.; Landesman, H. K. J. Am. Chem. Soc. 1956, 78, 5129. Hendrickson, J. B.; Boeckman, R. K., Jr. J. Am. Chem. Soc. 1971, 93, 1307

⁽²⁶⁾ Tanaka, M.; Suemune, H.; Sakai, K. Tetrahedron Lett. 1988,

^{29, 1733.} (27) Schick, H.; Roatsch, B.; Schwarz, H.; Hauser, A.; Schwarz, S. Liebigs Ann. Chem. 1992, 419. (28) Maki, S.; Asaba, N.; Kosemura, S; Yamamura, S. Tetrahedron

Lett. 1992, 33, 4169.

⁽²⁹⁾ Filippini, M. H.; Rodriguez, J. Santelli, M. J. Chem. Soc., Chem. Commun. 1993, 1647.

⁽³⁰⁾ Dauben, W. G.; Bunce, R. A. J. Org. Chem. **1983**, 48, 4642. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. **1974**, 39, 1612. Crispin, D. J.; Vanstone, A. E.; Whitehurst, J. S. J. Chem. Soc. (C) **1970**, 10.

⁽³¹⁾ Liu, H. J.; Ho, L. K.; Lai, H. K. Can. J. Chem. 1981, 59, 1685.

⁽³²⁾ Veselovskii, V.; Zhuzbaev, B. T.; Turdybekov, K. M.; Adekenov, S. M.; Struchkov, Yu. T.; Moiseenkov, A. M. Izv. Akad. Nauk. Ser. Khim. 1993, 1, 118.

⁽³³⁾ For preliminary results, see: Ouvrard, N.; Ouvrard, P.; Rodriguez, J.; Santelli, M. J. Chem. Soc., Chem. Commun. 1993, 571.

controlling the Michael addition.³⁵ K₂CO₃ in acetone³⁶ (Table 1, condition A) was generally found to be a sufficiently strong base for condensations involving reactive aldehydes with β -keto esters **1a-e** (entries 1-17) or 2-acetylcyclopentanone (1f) (entries 18-20). In contrast, less satisfactory yields were obtained with Cs₂CO₃ (condition B) and no reaction took place with magnesium, sodium, and lithium carbonate or pyridine. However, DBU in acetone or in toluene (conditions C, D) proved to be a superior base in the case of less reactive aldehydes such as 2c, 2f, and 2g, allowing stereoselective access to highly functionalized hydroxybicyclo[3.2.1]octanones such as 6, 15, and 16 (entries 8, 9, 23, 25). Up to five stereogenic centers are formed in this transformation. Pure ketols 3-16 are obtained in 30-99% yield as a generally separable mixture of isomers in which the one bearing an equatorial hydroxy group predominates in a ratio not exceeding 4/1.

Based on our previous results,³⁷ with prostereogenic aldehydes 2b,e-j (Tables 1 and 2) the configuration at the newly created asymmetric centers is determined by the stereoselectivity of the kinetically controlled Michael addition, which is the first step of the condensative cyclization. Under the standard conditions reported in Table 1, the diastereomeric ratio varies from as little as 75:25 (entry 16) up to >97:3 (entry 14). Regardless of the reaction conditions, the condensation of 2-butenal (2b) with 1a or 1f proceeds with good selectivity in favor of the corresponding 4-axial-methyl substituted bicyclic compounds 7a and 14a (entries 10-12, 19). The minor diastereomers 7b and 14b are easily detected in the crude reaction mixture by ¹H NMR through the presence of the characteristic α -OH hydrogen pattern, which reveals the presence of a single isomer having the hydroxyl in the equatorial position. Moreover, 7b was isolated and fully characterized by spectroscopic analysis and chemical transformations (vide infra). On the other hand, chiral (2S,3R)- β -keto esters $1c-e^{38}$ react smoothly with 2b under condition A to provide, with high selectivity and in synthetically useful yields, 8a, 9a, and 10a, respectively (entries 13–15). The highest diastereoselectivity is obtained with *tert*-butyl and benzyl esters 1d and 1e; no detection of the minor diastereomer 9b and only traces of 10b could be found in the crude product by ¹H NMR. In contrast, 8b arising from methyl ester 1c could be isolated by flash chromatography and fully characterized (vide infra). 2-Methylpropenal (2d) condenses with 1a in acetone in the presence of K₂CO₃ to give, in good yield, 11 as a mixture of four diastereomers with a modest selectivity in favor of 11a (entry 16). In contrast, 2-methyl-2-pentenal (2f) requires the use of DBU in toluene to reach an acceptable yield of 15, obtained as a mixture of four diastereomers in which 15a prevails (entries 21-23). Interestingly, with 1-formylcyclohexene

 $(2g)^{39}$ the cis-fused tricyclic equatorial alcohol 16a is the only detectable isomer in the crude reaction mixture and could be isolated in 30% yield (entry 25). The result obtained with trans-2-hexenal (2e) clearly establishes the predominance of the steric factors on the stereochemical outcome of the condensation. Actually, compared to the high C-4-axial diastereoselectivity obtained with 2b (>86%, entries 10-15, 19), the reaction of **2e** with **1a** is less selective and gives a 78:22 mixture of C-4-epimers 12a/b (entry 17). Moreover, a comparable loss of the C-4axial diastereoselectivity is observed with 2f (entry 23). Further experimental evidence is provided by the reaction of bulky α,β -unsaturated aldehydes **2h**-j with **1a** (Table 2). Interestingly, the C-4 diastereoselectivity is reversed and the C-4-equatorial substituted bicyclic derivatives 17-19 are selectively obtained using K_2CO_3 in acetone. This can be rationalized if we consider that the gauche steric hindrance developed by the C-3 substituent of the Michael acceptor prevails over the repulsive nonbonding interaction responsible for the high C-4 axial diastereoselectivity observed with 2-butenal (2b).³⁷

Structural Assignment. The structures of compounds 3-19 rest upon extensive ¹H and ¹³C NMR studies. The well known γ -effect⁴⁰ in ¹³C NMR, used initially in the structure assignment, proved to be consistent over the whole set of 41 bicyclic compounds prepared in this work (see Experimental Section). Moreover, chemical transformations confirmed these structures (vide infra). The following general trends can be observed: in the ¹H NMR spectra the signal due to the α -OH hydrogen appeared between δ 4.0-4.2 for the major equatorial-OH isomers and between δ 4.2–4.3 for axial derivatives, both presenting characteristic coupling constant patterns. On the other hand, besides a deshielding of the CHOH in all axial-OH isomers as compared to the equatorial-OH derivatives, ¹³C NMR spectra show a large γ -effect at C-6 and C-7 (from 3.5 to 8.5 ppm), respectively, due to the presence of an equatorial-C-4 substituent and an equatorial-C-2-OH function. For example, equatorial-OH-8a, which serves as a model compound, reveals signals at δ 4.20 (ddd, J = 11.0, 5.8, 3.2 Hz) and 2.60 (broad dd, J = 7.4, 3.2 Hz) for H-C-2 and *H*-C-1, respectively (Figure 1).

The observed coupling constants clearly indicate an equatorially oriented hydroxyl group since the value found for ${}^{3}J_{H2-H3\alpha} = 11$ Hz is in agreement with a 1,2trans-diaxial arrangement.⁴¹ Moreover, a ¹H-homonuclear two-dimensional chemical shift correlation experiment shows a cross-peak between the methyl substituent at C-4 and the axial $H\alpha$ -C-3 proton, characteristic of a trans-diaxial disposition.⁴² Since the (R)-configuration at C-6 was given by the starting β -keto ester, we were able to corroborate the proposed stereochemistry for equatorial-OH-8a. The structure of axial-OH-8a was similarly deduced (Figure 1). The signal due to H-C-2 at $\delta = 4.31$ (tdd, J = 4.5, 1.8, 1.2 Hz) shows two equatorial-equatorial $({}^{3}J_{H1-H2} \text{ and } {}^{3}J_{H2-H3\beta})$, one equatorial-axial $({}^{3}J_{H2-H3\alpha})$ and one ${}^{4}J_{H2-H4}$ coupling constant, which are in agreement with the OH-C-2 and the Me-C-4 in 1,3-cis-diaxial relation. Moreover, comparison of

⁽³⁴⁾ For recent successful base promoted condensative cyclizations leading to the parent bicyclo[3.3.1]nonane skeleton, see: Qian, L.; Ji, R. *Tetrahedron Lett.* **1989**, *30*, 2089. Kozikowski, A. P.; Xia, Y.; Reddy, E. R.; Tückmantel, W.; Hanin, I.; Tang, X. C. J. Org. Chem. **1991**, *56*, 4636. Gravel, D.; Benoît, S.; Kumanvic, S.; Sivaramakrishnan, H. Tetrahedron Lett. **1992**, *33*, 1403.

⁽³⁵⁾ Yamaguchi, M.; Yokota, N.; Minami, T. J. Chem. Soc., Chem. Commun. 1991, 1088.

 ⁽³⁶⁾ Barco, A.; Benetti, S.; Pollini, G. P. Synthesis 1973, 316.
 (37) Ouvrard, N.; Rodriguez, J.; Santelli, M. Angew. Chem., Int. Ed.

<sup>Engl. 1992, 31, 1651.
(38) For the preparation of 1c from (R)-(+)-pulegone, see: Marx, J.
N., Norman, L. R. J. Org. Chem. 1975, 40, 1602. Compounds 1d, ewere prepared by esterification of pulegenic acid following the literature procedure: Murphy, C. F.; Koehler, R. E. J. Org. Chem. 1970, 35, 2429.</sup>

⁽³⁹⁾ Heilbron, I.; Jones, E. R. H.; Richardson, R. W.; Sondheimer, F. J. Chem. Soc. **1949**, 737.

⁽⁴⁰⁾ Grant, D. M.; Cheney, V. B. J. Am. Chem. Soc. 1967, 89, 5315.
(41) Günther, H. in NMR Spectroscopy, an Introduction; Wiley and Sons: New York, 1980.

⁽⁴²⁾ Platzer, N.; Goasdoue, N.; Davoust, D. Magn. Reson. Chem. 1987, 25, 311.

Entry	1	2	Conditions ^a	Products (Z = COOMe)	Ratio ^b OH _{eq} /OH _{ax}	Diastereoselectivity ^C %	Yield ^d %
1	2	a	A, 15h	0,2	1.6	•	96
2			B , 3h 30	OH 3a	1	•	75
3			C, 3h 30		1		72
4	Ъ	a	A, 18h	Me CH 4a	1.2		45
5	c	8	A, 20h	Ne 0H 5a	1.8		88
6	2	c	A , 96h	-	1.2		25
7			B , 72h	ZMe		-	0
8			C, 96h ^e	OH Ga	n.d.f		58
9			D, 30h		1.3		87
10	a	Ь	A, 24h		3.8	88	90
11			B , 20h		3.6	88	52
12			D, 4h 30	7a V OH V OH 71	b 3.4	86	51
13	c	b	A, 48h	Me-JOH Me-JOH 8t	2.7	85	72
14	d	b	A, 96h	Me- OH Sa	2.8	> 97	65
15	e	b	A, 64h	$\begin{array}{c} \overset{B=0,C}{\longrightarrow} & \overset{Me}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{B=0,C}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{H}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{B=0,C}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{H}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{O}{\longrightarrow$	2.8 Þ	> 95	61
16	a	d	A, 24h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	с 2.8 Ъ	75	78
17	8	h	A, 32h	$\begin{array}{c} 0 \\ 12a \end{array} \xrightarrow{2} \\ 12a \end{array} \xrightarrow{nPt} \\ 0H \end{array} + \begin{array}{c} 0 \\ 0 \\ 0H \end{array} \xrightarrow{2} \\ 0H \\ 12a \end{array}$	3.7 b	78	99
18	f	a	A , 18h	SH 13a	1.5		64
						~	(9
19	f	ь	A, 24h		2.5	90 - 1	30
20			D, 5h	14а 🗸 он 🗸 он 14	n. d. b	n. ar	30
21	8	f	A, 48h		-	-	0
22			C, 48h	HTT Me + HTT M	• • <u>·</u>		21
23			D, 29h		b n.d.	78	65
				o. z u //			
24	8	g	A, 24h	H KA	-	•	0
25			D, 22h		-	>95	30

 Table 1. Synthesis of 2-Hydroxybicyclo[3.2.1]octanones 3-16

^{*a*}A: K₂CO₃, acetone, RT; B: Cs₂CO₃, acetone, RT; C: DBU, acetone, RT; D: DBU, toluene, RT. ^{*b*}Determined by ¹H NMR spectroscopy (200 or 400 MHz).^{*c*} Referred to the percentage of the major diastereomer (**a**), i. e. $D = [\mathbf{a}/\mathbf{a}+\mathbf{b}] 100\%$ and determined by ¹H NMR spectroscopy (200 or 400 MHz).^{*d*} Isolated. ^{*e*}Reflux.^{*f*}n. d. : not determined.

Table 2. Reaction of 2h-j with 1a under Conditions A

2	Time (h)	Pro	ducts (Z Z R H OH	= COOMe) $+ R$ $+ OH$	Ratio ^{<i>a</i>} OH _{eq} /OH _{ax}	D (%) ^b	Yield ^C (%)
h	24	R = Ph	17a	176	3.3	89	75
i	45	$\mathbf{R} = o$ -Anisyl	18a	18b	2.4	82	76
j	29	R = Furyl	19a	19b	1.6	72	78

^aDetermined by ¹H and ¹³C NMR spectroscopies (200 or 400 MHz). ^b Referred to the percentage of the major diastereomer (b), i. e. D = [b/a+b] 100% determined by ¹³C NMR spectroscopy (inverse gated decoupling, 200 and 400 MHz). ^c Isolated.

Figure 1. ¹H and ¹³C NMR observations for 8a and 8b.

the ¹³C NMR spectrum of equatorial- and axial-OH **8a** shows the disappearance of a γ -effect of about 4 ppm at C-7 due to the equatorial-OH.

The minor diastereomer **8b** was characterized using similar arguments. Only one hydroxy epimer could be isolated and presents the characteristic α -OH hydrogen *H*-C-2 at $\delta = 4.02$ as a ddd with ${}^{3}J_{\text{H2-H3}\alpha} = 9.6$ Hz indicating a *trans*-diaxial disposition with $H\alpha$ -C-3. On the other hand, the equatorial methyl at C-4 produces a γ -effect at C-6 of 7.7 ppm compared to equatorial-**8a** (Figure 1). This analysis established the proposed stereochemistry, which results from the highly diastereoselective three-center Michael addition.³⁷ A contrasteric Michael addition⁴³ leading to **20** can thus be rejected (Scheme 1).

Control of the Diastereoselectivity. As expected from a recent study of the diastereoselectivity of the Michael addition,³⁷ it was found that the stereoselectivity of our condensative carbocyclization could be influenced by a simple modification of the reaction conditions (Table 3). For example, condensation of **1a** with **2b** in MeOH instead of acetone proceeds with very low diastereoselectivity in favor of **7a** when K_2CO_3 is used as base (entries 1, 2). From this result it seems that the base plays a minor role compared to the solvent system. Thus, using either DBU, DABCO, DMAP, or Et₃N in MeOH (entries 3-6) results in the more or less highly selective formation of **7b** while **7a** is the major isomer with DBU in acetone (entry 7) or toluene (entry 8). Increasing the polarity of the medium has a dramatic effect on the

diastereoselectivity as shown by the addition of HMPA resulting in the selective obtention of **7b** (compare entries 8 and 9). Finally, a specific complexing agent combined with a high polarity medium has an even greater effect on the diastereoselectivity. Indeed, the complexation of the metal ion by Kryptofix 222^{44} results in a reverse diastereoselectivity and **7b** is obtained with high selectivity (entry 10).⁴⁵

Reactivity of Bicyclo[3.2.1]octane Derivatives. With an efficient stereoselective preparation of hydroxybicyclo[3.2.1]octanones in hand, we turned our attention to the reactivity of these derivatives, which constitute potential precursors of functionalized cycloheptanes.

⁽⁴³⁾ For a model for the diastereofacial differentiation in the alkylation of related endocyclic enolates with an asymmetric center at the β -position, see: Tomioka, K.; Kawasaki, H.; Yasuda, K.; Koga, K. J. Am. Chem. Soc. **1988**, 110, 3597.

⁽⁴⁴⁾ Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron 1973, 29, 1647.

⁽⁴⁵⁾ For similar effects on the diastereoselectivity, see ref 37 and refs cited therein. Moreover, we found a similar observation during the reaction of cinnamaldehyde **2h** with **1a**, which gave the axial C-4 isomer **17a** (see Experimental Section) with high diastereoselectivity.

Tandem Michael Addition-Intramolecular Aldolization

 Table 3. Influence of the Reaction Conditions in the Condensation of 1a with 2b on the 7a:7b Ratio

entry	conditions	7a:7b ^a
1	K ₂ CO ₃ , acetone, 15 h, rt	88:12
2	K ₂ CO ₃ , MeOH, 4 h, 0 °C	57:43
3	DBU, MeOH, 4 h, 0 °C	40:60
4	DABCO, MeOH, 23 h, rt	44:56
5	DMAP, MeOH, 96 h, rt	40:60
6	Et_3N , MeOH, 24 h, rt	35:65
7	DBU, acetone, 2 h, rt	73:23
8	DBU, toluene, 2 h, rt	86:14
9	DBU, toluene/HMPA (1/	43:63
	1), 20 h, rt	
10	K ₂ CO ₃ , HMPA/CH ₂ Cl ₂ (5/ 1), Kryptofix 222,	>5:95
	cat., 8 h, −20 °C	

 $^{\alpha}$ Determined by $^{1}\mathrm{H}$ NMR spectroscopy (200 or 400 MHz) on the crude reaction.

Previous reports on the reactivity of bicyclo[3.2.1]octanediones prompted us to surmise that the oxidation of compounds 3-19 could provide access to substituted cycloheptanones. It is known that diketones 21^{24b} and triketones 23^{27} undergo hydrolytic ring opening (cleavage A) leading respectively to cycloheptanones 22 and 24 (eqs 2, 3).

Unfortunately in our case diketones 25, obtained by low temperature Jones oxidation⁴⁶ of the corresponding ketols, evolve upon treatment with K_2CO_3 in MeOH very rapidly and in quantitative yield to the open-chain triesters 27 (Scheme 2). The presence of the car-

Scheme 2

25a, $R^1 = R^2 = H (35\% \text{ from } 3a)$

25b, $R^1 = H$, $R^2 = Ph$ (60% from 17b)

bomethoxy substituent seems to be crucial in this transformation, which proceeds selectively by cleavage B,

- (46) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39.
- (47) Filippini, M. H.; Rodriguez, J. Synth. Commun. 1995, 25, 245.
 (48) Grob, C. A. Angew. Chem., Int. Ed. Engl. 1969, 8, 535.

regardless of the substituent R^1 and R^2 , to cyclopentanone intermediates **26**, precursors of **27** by a second retro-Dieckmann reaction.⁴⁷

Application of the fragmentation of bicyclic acetal intermediates²⁶ also appeared ineffective with our substrates. Reaction of **3a** with ethylene glycol in the presence of an excess of BF_3 ·Et₂O gives only ethylene ketal **28**, which even proved to be stable over 24 h in the presence of 1.5 equiv of *p*-TsOH in refluxing benzene (eq 4).

Another approach to the cycloheptane skeleton, based on the Grob type fragmentation⁴⁸ of tosylates, has been previously reported.^{24c} As expected, equatorial-OTs **29** by a very clean fragmentation promoted by K_2CO_3 in MeOH gives *meso*-diester **30** in 60% yield (eq 5). Similarly, tricyclic derivative **31** is easily transformed into the functionalized *cis*-bicyclo[5.4.0]undecene **32**, with a ring system present in many naturally occurring compounds (eq 6).⁴⁹ Besides their synthetic potentialities these stereoselective transformations strongly support and confirm the proposed structure and stereochemistry of bicyclic ketols **8a** and **16a**.

On the other hand, by analogy with previous results^{24d} axial-OTs **33** treated under the same conditions gives the unstable cycloheptene **35** through a retro-Dieckmann reaction to **34** followed by a tosyl elimination (eq 7).

These results prompted us to study the behavior of the free bicyclooctanols under the base-promoted retro-Dieckmann ring cleavage conditions. We found that these substrates are effectively transformed to the ex-

⁽⁴⁹⁾ Liu, H.-J.; Browne, N. C. Can. J. Chem. 1981, 59, 601.

Table 4.	Retro-Dieckmann	Ring Cleavage	of Bicyclooctanols in MeOH
----------	------------------------	----------------------	----------------------------

Compound	Conditions ^a	Product	Ratio b OH _{eq} /OH _{ax}	Yield (%) ^C
3a	A, 6h, 0°C	$36, R^1 = H, R^2 =$	OMe 1.5	96
4a	A, 16h, 20°C	$37, R^1 = Me, R^2$	= OMe 1.2	20
13a	A, 6h, 0°C	$38, R^1 = H, R^2 =$	Me 1.4	70
7b	A, 6h, 20°C B, 35h, 20°C MeO	SCOOMe Me 39		87 100
17b	A, 2h30, 20°C	$\frac{COOMe}{\sqrt{1000}} = 40a,b,R = Ph$	2.8	60
18b	A, 2h30, 20°C	41a,b, R = o-An	isyl 1.3	67
19b	A, 2h30, 20°C MeOC	C OH 42a,b, R = Furyl	2.0	65
7a	A, 35h, 20°C	СООМе Аме		5 d
	B, 35h, 20°C	43 + 39	-	13 d
	B, 6h, 0°C MeO		-	4 d

^aA: 1eq. K_2CO_3 ; B: 1eq. DBU.^b Determined by ¹H NMR spectroscopy (200 or 400 MHz). ^c Isolated by FC on silica gel.^d Yield of 39.

pected cycloheptane derivatives by a clean reverse-Dieckmann reaction promoted by K₂CO₃ or DBU in MeOH (Table 4). For example, 3a, 7b, and 13a react smoothly with K₂CO₃ or DBU in MeOH to give the corresponding functionalized cycloheptanols 36, 38, and 39 in very good yields, but 4a furnishes 37 in only 20% isolated yield on treatment with K₂CO₃ in MeOH. The transformation of 17b-19b requires DBU as base and cycloheptanols 40-42 are obtained as a separable mixture of hydroxy epimers. In sharp contrast, regardless of the reaction conditions, 7a presenting an axial-Me substituent at C-4 failed to react cleanly either with K.-CO₃ or DBU giving exclusively polycondensation products. No evidence for the formation of the expected cycloheptanol 43 was found in the crude reaction mixture, but interestingly, 39 could be isolated in yields not exceeding 13%. This result, compared with the reactivity of 7b, clearly establishes the influence of steric factors during the retro-Dieckmann ring cleavage.⁴⁷ It can be explained by invoking a tandem retro-aldol-retro-Michael ring opening of 7a to give 1a and 2b followed by a thermodynamically controlled ring reconstitution leading to 7b, precursor of 39. The low yield observed in this transformation can be due to partial polymerization of 2b and some degradation of 1a by a retro-Dieckmann opening in the reaction conditions. Experimental evidence for this pathway was provided by a cross experiment in the presence of cinnamaldehyde (2h). Indeed, the reaction of a mixture of 7a and 2h with DBU in MeOH results in the formation of 39 (40%) and 40 (10%)accompanied by unreacted 7a (50%).

Conclusion. The base-promoted tandem Michael addition-intramolecular aldol cyclization of α -carbonyl substituted cyclopentanones with α,β -unsaturated aldehydes proved to be a general stereoselective one-pot carbocyclization sequence. The stereoselectivity of this condensation can be partially controlled by simple ex-

perimental modifications. This allows the facile preparation of highly substituted, stereodefined, and optically active 2-hydroxybicyclo[3.2.1]octan-8-ones, precursors of functionalized cycloheptanes by a Grob-type fragmentation or by a mild retro-Dieckmann ring cleavage. Since the experimental conditions are extremely simple, inexpensive, and very mild, we hope that extensions of our methodology would be useful for the stereoselective preparation of complex natural and unnatural products.

Experimental Section

General. Melting points were observed in open Pyrex capillary tubes and are uncorrected. Optical rotations were recorded by using a 10 cm, 1 mL cell. FC (flash chromatography) was performed with Merck silica gel 60 (230–240 mesh).⁵⁰ TLC was performed on Alugram SIL G/UV 254 silica gel analytical plates with a 250 μ m coating. Low and high resolution mass spectra were provided by the Mass Spectral Services at the University of Rennes I and elemental analyses were determined by the Microanalytical Services at the University of Marseille III.

Materials. Unless otherwise noted, all starting materials and reagents were obtained from commercial suppliers and used without further purification. Commercial anhydrous analytical grade acetone (SDS) was used for the condensations while anhydrous MeOH, toluene, and THF were obtained, respectively, by distillation over magnesium and from sodium benzophenone under argon. Unless otherwise specified, all reactions involving air or moisture sensitive compounds were carried out under an atmosphere of dry argon.

General Procedures for the Preparation of 2-Hydroxybicyclo[3.2.1]octan-8-ones 3–19. Standard Conditions. To a solution of α -carbonyl substituted cyclopentanones 1 (1 mmol) in dry solvent (10 mL) was added the appropriate base (1.5 mmol), and the mixture was stirred under nitrogen for 15 min at room temperature. The α,β -unsaturated aldehyde 2 (1.5 mmol) in dry solvent (2 mL) was then slowly added

via a syringe, and the evolution of the reaction was checked by TLC. After completion, when K₂CO₃ or Cs₂CO₃ were used, simple filtration through a short pad of Celite and evaporation of the filtrate under reduced pressure gave the crude bicyclic compounds, which were purified by FC. In the case of DBU or other soluble bases (DABCO, DMAP, Et₃N) the solvent and the volatiles were first eliminated under reduced pressure, the residue was dissolved in Et₂O (25 mL), acidified with 1 N HCl (15 mL), and the organic layer was extracted with Et₂O (3 \times 25 mL), washed with H₂O (15 mL), and dried over MgSO₄. Evaporation of the solvent under reduced pressure gave the crude bicyclic compounds, which were purified by FC. Inversion of the C-4 diastereoselectivity: in this case, the reactions were performed at -20 °C following the general procedure. In the presence of Kriptofix 22244 (0.25 equiv), K2- CO_3 was used as base and a mixture of HMPA/CH₂Cl₂ (5/1) as solvent. Under these conditions, bicyclic derivatives 7b and 17b were selectively obtained (Table 3).

Methyl rac-2-Hydroxy-8-oxobicyclo[3.2.1]octanecarboxylate (3a). Equatorial-OH epimer: mp 64–65 °C; IR (CDCl₃) 3480, 2945, 1755, 1720 cm ⁻¹; ¹H NMR (200 MHz) δ 4.04 (dt, J = 3.4 and 5.6 Hz, 1 H), 3.71 (s, 3 H), 2.55 (m, 2 H), 1.96 (m, 2 H), 1.68 (m, 1 H); ¹³C NMR (50 MHz) δ 221.24, 171.78, 73.43, 56.80, 54.12, 52.36, 31.12, 27.04, 26.27, 16.21. Axial-OH epimer: IR (neat) 3480, 2960, 1760, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 4.28 (m, 1 H), 3.71 (s, 3 H), 2.54 (m, 2 H), 2.00 (m, 5 H), 1.69 (m, 2 H); ¹³C NMR (50 MHz) δ 212.10, 171.78, 77.37, 57.38, 52.28, 52.14, 33.88, 25.79, 25.38, 19.29. Anal. Calcd for C₁₀H₁₄O₄: C, 60.59; H, 7.12. Found: C, 60.57; H, 7.10.

Methyl *rac*-2-Hydroxy-1-methyl-8-oxobicyclo[3.2.1]octanecarboxylate (4a). Two hydroxy isomers not separated: IR (CDCl₃) 3488, 2953, 1745, 1725 cm⁻¹. Equatorial-OH epimer: ¹H NMR (200 MHz) δ 3.92 (m, 1 H), 3.73 (s, 3 H), 3.70-3.56 (m, 2 H), 2.57-2.41 (m, 2 H), 2.20-1.60 (m, 5 H), 1.09 (s, 3 H); ¹³C NMR (50 MHz) δ 210.92, 170.96, 74.18, 59.93, 55.38, 51.88, 35.97, 32.52, 27.24, 26.39, 21.05. Axial-OH epimer: ¹H NMR (200 MHz) characteristic signals δ 3.74 (s, 3 H), 1.10 (s, 3 H); ¹³C NMR (50 MHz) δ 211.64, 170.94, 77.99, 60.40, 53.39, 51.88, 35.67, 34.67, 30.35, 25.53, 21.11. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 60.27; H, 7.61.

Methyl (6*R*)-2-Hydroxy-6-methyl-8-oxobicyclo[3.2.1]octanecarboxylate (5a). Two hydroxy isomers not separated: IR (neat) 3445, 2956, 1737, 1273 cm⁻¹. Equatorial-OH epimer: ¹H NMR (200 MHz) δ 4.09–4.05 (m, 1 H), 3.72 (s, 3 H), 2.62 (dd, J = 3.2 and 7.1 Hz, 1 H), 2.53–2.17 (m, 3 H), 2.06–1.93 (m, 1 H), 1.81–1.64 (m, 3 H), 1.43–1.33 (m, 1 H), 1.01 (d, J = 6.9 Hz, 3 H); ¹³C NMR (50 MHz) δ 210.92, 170.96, 74.18, 59.93, 53.38, 51.88, 35.97, 32.52, 27.24, 26.39, 21.05. Axial-OH epimer: ¹H NMR (200 MHz) characteristic signals δ 4.36–4.32 (m, 1 H), 3.73 (s, 3 H), 1.16 (d, J = 7.1Hz, 3 H); ¹³C NMR (50 MHz) δ 211.67, 170.96, 74.18, 59.93, 53.38, 51.88, 35.97, 32.52, 27.24, 26.39, 21.05. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 60.24; H, 7.57.

Methylrac-2-Hydroxy-4,4-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (6a). Equatorial-OH epimer: IR (neat) 3450, 2970, 1755, 1735 cm⁻¹; ¹H NMR (200 MHz) δ 4.16 (td, J = 3.2 Hz and 8.2 Hz, 1 H), 3.68 (s, 3 H), 2.53 (m, 1 H), 2.00 (m, 3 H), 1.60 (d, J = 8.2 Hz, 2 H), 1.21 (m, 1 H), 1.11 (s, 3 H), 1.04 (s, 3 H), 1.04 (s, 3 H); ¹³C NMR (50 MHz) δ 209.69, 170.38, 69.21, 62.62, 53.36, 51.86, 42.85, 39.14, 25.47, 24.90, 24.36, 15.70. Axial-OH epimer: IR (neat) 3500, 2980, 1760, 1735 cm⁻¹; ¹H NMR (200 MHz) δ 4.21 (m, 1 H), 3.70 (s, 3 H), 2.46 (m, 1 H), 2.24 (m, 1 H), 1.85 (m, 3 H), 1.56 (m, 1 H), 1.35 (s, 3 H), 1.24 (m, 1 H), 1.06 (s, 3 H); ¹³C NMR (50 MHz) δ 211.31, 170.23, 76.90, 63.19, 52.30, 51.27, 44.91, 41.03, 25.78, 25.43, 24.65, 19.51. Anal. Calcd for C₁₂H₁₈O₄: C, 63.70; H, 8.02. Found: C, 63.71; H, 8.06.

Methyl rac-2-Hydroxy-4-(axial)-methyl-8-oxobicyclo-[3.2.1]octanecarboxylate (7a). Equatorial-OH epimer: mp 104-106 °C; IR (neat) 3500, 1760, 1730 cm⁻¹; ¹H NMR (400 MHz) δ 4.23 (dddd, J = 5.1, 5.1, 6.7 and 10.3 Hz, 1 H), 3.71 (s, 3 H), 2.56 (dd, J = 3.2 and 6.7 Hz, 1 H), 2.45 (dq, J =5.9 and 6.9 Hz, 1 H), 2.31 (m, 1 H), 2.03 (ddd, J = 2.8, 10.9and 21.8 Hz, 2 H), 1.83 (m, 3 H), 0.94 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 209.27, 171.98, 71.24, 59.44, 54.94, 52.10, 36.75, 33.79, 31.01, 16.90, 15.77. **Axial-OH epimer**: mp 95–97 °C; IR (neat) 3500, 2960, 1760, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 4.20 (m, 1 H), 3.71 (s, 3 H), 2.68 (m, 1 H), 2.48 (m, 1 H), 2.20 (m, 1 H), 2.00 (m, 4 H), 1.63 (m, 1 H), 1.17 (d, J = 7.2 Hz, 3 H); ¹³C NMR (50 MHz) δ 210.95, 172.00, 79.75, 59.73, 53.46, 51.96, 43.28, 32.18, 30.30, 19.58, 18.00. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 62.20; H, 7.54.

Methyl *rac*-2-Hydroxy-4-(equatorial)-methyl-8-oxobicyclo[3.2.1]octanecarboxylate (7b): obtained diastereoselectively (>95/5) by addition of Kriptofix 222; IR (neat) 3500, 2955, 1755, 1730 cm⁻¹. Equatorial-OH epimer: ¹H NMR (200 MHz) δ 4.05 (dddd, J = 5.0, 5.0, 6.5 and 10.2 Hz, 1 H), 3.73 (s, 3 H), 2.56–2.30 (m, 3 H), 2.05–1.70 (m 1 H), 2.31 (m, 4 H), 2.03 (m, 1 H), 0.91 (d, J = 7.5, 3 H); ¹³C NMR (50 MHz) δ 210.84, 170.38, 71.00, 61.45, 52.72, 51.92, 35.22, 35.22, 20.33, 15.94, 15.64. Axial-OH epimer: ¹H NMR (200 MHz) δ 4.20 (m, 1 H), 3.74 (s, 3 H), 0.88 (d, J = 6.5, 3 H); ¹³C NMR (50 MHz) δ 211.57, 170.28, 75.34, 62.25, 52.10, 51.15, 37.77, 34.29, 19.58, 19.37, 16.34. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 62.26; H, 7.63.

Methyl (-)-(4S,6R)-2-Hydroxy-4,6-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (8a). Equatorial-OH epi**mer**: mp 102–104 °C; $[\alpha]^{26}_{578} = -47^{\circ} (c = 2, \text{CHCl}_3)$; IR (neat) 3600, 2960, 1760, 1725 cm⁻¹; ¹H NMR (400 MHz) δ 4.20 (ddd, J = 3.2, 5.8 and 11.1 Hz, 1 H), 3.71 (s, 3 H), 2.60 (broad dd, J) = 3.2 and 7.4 Hz, 1 H), 2.58 (dq, J = 1.5, 7.0 and 7.1 Hz, 1 H), 1.90 (ddd, J = 7.0, 11.1 and 14.0 Hz, 1 H), 1.77 (dddd, J = 1.1)1.5, 5.8 and 14.0 Hz, 1 H), 1.29 (m, 1 H), 0.96 (d, J = 6.6, 3 H), 0.85 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz) δ 209.11, 170.66, 71.40, 63.99, 55.73, 51.66, 37.96, 37.06, 33.32, 26.18, 20.96, 17.17. Axial-OH epimer: mp 64-66 °C; $[\alpha]^{26}_{578} = -1.3^{\circ}$ (c = 2, CHCl₃); IR (neat) 3600, 2965, 2940, 1770, 1725 cm⁻¹; ¹H NMR (400 MHz) δ 4.23 (dddd, J = 5.1, 5.1, 6.7 and 10.3 Hz, 1 H), 3.71 (s, 3 H), 2.56 (dd, J = 3.2 and 6.7 Hz, 1 H), 2.45 (dq, J = 5.9 and 6.9 Hz, 1 H), 2.31 (m, 1 H), 2.03 (ddd, J = 2.8, 10.9 and 21.8 Hz, 2 H), 1.83 (m, 3 H), 0.94 (d, J = 7.1, 3 H); ¹³C NMR (100 MHz) & 210.68, 170.66, 79.71, 64.41, 54.06, 51.58, 44.58, 36.20, 31.72, 30.04, 20.86, 18.48. Anal. Calcd for $C_{12}H_{18}O_4\colon$ C, 63.70; H, 8.02. Found: C, 63.67; H, 7.95.

Methyl (4R,6R)-2-(equatorial)-Hydroxy-4,6-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (8b): IR (neat) 3500, 2940, 1760, 1740 cm⁻¹; ¹H NMR (200 MHz) δ 4.02 (ddd, J = 4.1, 5.5 and 9.6 Hz, 1 H), 3.71 (s, 3 H), 2.56 (m, 1 H), 2.36 (m, 1 H), 2.20 (m, 1 H), 1.80 (m, 2 H), 1.38 (m, 1 H), 1.16 (d, J = 6.6, 3 H), 1.00 (d, J = 6.4 Hz, 3 H); ¹³C NMR (50 MHz) δ 210.84, 170.15, 71.31, 64.30, 52.84, 51.60, 37.12, 35.79, 29.32, 27.66, 21.88, 16.63; MS m/e (relative intensity): C₁₂H₁₈O₄ M⁺ 226 (18), 195 (19), 156 (62), 145 (34), 95 (55), 55 (63), 41 (70), 28 (88), 18 (100); HRMS: calcd 226.12050, obsd 226.1217.

tert-Butyl (-)-(4S,6R)-2-Hydroxy-4,6-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (9a). Equatorial-OH epimer: mp 133-135 °C; $[\alpha]^{26}_{578} = -50^{\circ}$ (c = 1.5, CHCl₃); IR (neat) 3490, 2980, 1765, 1715 cm⁻¹; ¹H NMR (200 MHz) δ 4.17 (m, 1 H), 2.53 (m, 2 H), 2.32 (m, 2 H), 1.88 (m, 1 H), 1.78 (m, 1H), 1.44 (s, 9 H), 1.25 (m, 1 H), 1.02 (d, J = 7.1 Hz, 3 H), 0.86 (d, J = 6.4 Hz, 3 H); ¹³C NMR (50 MHz) δ 209.13, 168.89, 81.35, 71.53, 63.57, 55.69, 38.15, 36.74, 33.47, 28.10, 26.15, 21.09, 17.04. Axial-OH epimer: $[\alpha]^{26}_{578} = -2.6^{\circ}$ (c = 1.5, CHCl₃); IR (neat) 3500, 2980, 2940, 1755, 1725 cm⁻¹; ¹H NMR (200 MHz) δ 4.23 (m, 1 H), 1.46 (s, 9 H), 1.18 (d, J = 7.1 Hz, 3 H), 1.03 (d, J = 5.5 Hz, 3 H); ¹³C NMR (50 MHz) δ 207.16, 168.41, 81.27, 75.47, 64.80, 51.09, 39.44, 34.91, 29.70, 28.22, 28.13, 21.95, 16.67. Anal. Calcd for C₁₅H₂₄O₄: C, 67.14; H, 9.01. Found: C, 67.19; H, 9.04.

Benzyl (-)-(4S,6R)-2-Hydroxy-4,6-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (10a). Equatorial-OH epimer: $[\alpha]^{26}_{578} = -35^{\circ} (c = 0.45, CHCl_3)$; IR (neat) 3480, 2960, 1755, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 7.32 (m, 2 H), 5.14 (s, 2 H), 4.15 (m, 1 H), 2.75 (m, 1 H), 2.56 (m, 2 H), 2.36 (M, 2 H), 1.73 (m, 2 H), 1.26 (m, 1 H), 0.86 (d, J = 6.4 Hz, 3H), 0.81 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 208.84, 169.76, 135.55, 128.51, 128.43, 128.65, 71.36, 66.33, 63.70, 55.65, 37.92, 36.94, 33.31, 26.16, 21.02, 17.11. Axial-OH epimer: $[\alpha]^{26}_{578} = -7^{\circ} (c = 0.45, CHCl_3);$ ¹H NMR (200 MHz) δ 7.34 (m, 5 H), 5.16 (s, 2 H), 4.29 (m, 1 H), 2.80 (q, J = 7.0 Hz, 1 H), 2.22 (ddd, J = 4.4, 6.5 and 15.2 Hz, 1 H), 1.97 (dd, J = 9.5 Hz and 13.6 Hz, 1 H), 1.57 (d, J = 15.4 Hz, 1 H), 1.42 (ddd, J =5.2, 7.3 and 13.1 Hz, 1 H), 1.07 (d, J = 7.2 Hz, 3 H), 0.90 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 209.95, 169.72, 135.75, 128.58, 128.44, 128.28, 79.85, 66.32, 64.21, 54.20, 44.58, 36.28, 31.94, 30.20, 18.55 (2 CH₃). Anal. Calcd for C₁₈H₂₂O₄: C, 71.50; H, 7.33. Found: C, 71.53; H, 7.31.

Benzyl (4*R*,6*R*)-2-(axial)-Hydroxy-4,6-dimethyl-8-oxobicyclo[3.2.1]octanecarboxylate (10b). Equatorial-OH epimer: IR (neat) 3450, 2925, 1755, 1725 cm⁻¹; ¹H NMR (200 MHz) δ 7.32 (m, 5 H), 5.17 (s, 2H), 4.15 (m, 1 H), 1.15 (d, *J* = 7.0 Hz, 3 H), 0.88 (d, *J* = 5.0 Hz, 3 H); ¹³C NMR (50 MHz) δ 211.05, 169.11, 135.82, 128.25, 128.25, 128.05, 75.24, 66.33, 64.88, 50.72, 39.50, 34.54, 31.02, 27.92, 21.80, 16.58. Anal. Calcd for C₁₈H₂₂O4: C, 71.50; H, 7.33. Found: C, 71.55; H, 7.34.

Methyl rac-2-Hydroxy-3-(axial)-methyl-8-oxobicyclo-[3.2.1]octanecarboxylate (11a). Equatorial-OH epimer: IR (CDCl₃) 3500, 2965, 2930, 1755, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 3.73 (s, 3 H), 3.56 (dd, J = 3.6 and 8.4 Hz, 1 H), 2.55 (m, 1 H), 2.10–1.60 (m, 6 H), 1.10 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 210.66, 171.40, 78.81, 57.39, 53.37, 51.98, 39.91, 31.77, 27.22, 16.78, 16.54. Axial-OH epimer: mp 57 °C; ¹H NMR (200 MHz) δ 4.09 (m, 1 H), 3.72 (s, 3 H), 1.01 (d, J = 5.8 Hz, 3 H); ¹³C NMR (50 MHz) δ 212.24, 171.56, 79.48, 56.55, 52.00, 51.83, 40.72, 28.76, 26.22, 18.71, 15.27. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 62.25; H, 7.63.

Methyl *rac*-2-Hydroxy-3-(equatorial)-methyl-8-oxobicyclo[3.2.1]octanecarboxylate (11b). Axial-OH epimer: IR (CDCl₃) 3500, 2970, 1760, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 4.00 (m, 1 H), 3.73 (s, 3 H), 2.87 (dq, J = 6.0 and 7.2 Hz, 1 H), 2.50 (m, 1 H), 2.30 (m, 2 H), 1.85 (m, 3 H), 1.60 (m, 1 H), 1.16 (d, J = 6.2 Hz, 3 H); ¹³C NMR (50 MHz) δ 212.08, 171.81, 85.00, 55.97, 52.24, 51.40, 40.74, 33.89, 29.30, 20.98, 19.27. Anal. Calcd for C₁₁H₁₆O₄: C, 62.25; H, 7.60. Found: C, 62.25; H, 7.61.

Methyl rac-2-Hydroxy-4-(axial)-n-propyl-8-oxobicyclo-[3.2.1]octanecarboxylate (12a). Equatorial-OH epimer: IR (neat) 3485, 2955, 1756, 1726 cm⁻¹; ¹H NMR (400 MHz) δ 4.17–4.12 (m, 1 H), 3.69 (s, 3 H), 2.56–2.52 (m, 1 H), 2.36– 1.64 (m, 9 H), 1.42–1.11 (m, 3 H), 0.87–0.81 (m, 3 H); ¹³C NMR (50 MHz) δ 209.31, 171.76, 70.77, 58.81, 54.38, 51.54, 41.30, 31.82, 30.40, 28.58, 20.93, 15.13, 13.32. Axial-OH epimer: ¹H NMR (400 MHz) δ 4.30 (s broad, 1H), 3.72 (s, 3 H), 2.52– 2.40 (m, 2 H), 2.29–2.11 (m, 2 H), 2.05–1.87 (m, 2 H), 1.85– 1.77 (m, 1 H), 1.67–1.48 (m, 2 H), 1.47–1.27 (m, 2 H), 1.26– 1.09 (m, 2 H), 0.86–0.81 (m, 3 H); ¹³C NMR (50 MHz) δ 211.44, 172.17, 79.78, 59.42, 53.41, 51.87, 48.30, 30.20, 32.35, 30.20, 26.88, 21.32, 19.41, 13.71. Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 65.01; H, 8.35.

Methyl rac-2-Hydroxy-4-(equatorial)-n-propyl-8-oxobicyclo[3.2.1]octanecarboxylate (12b). Equatorial-OH epimer: IR (neat) 3471, 2956, 1764, 1732 cm⁻¹; ¹H NMR (400 MHz) δ 4.02–3.98 (m, 1 H), 3.72 (s, 3 H), 2.49–2.42 (m, 1 H); ¹³C NMR (50 MHz) δ 210.53, 170.25, 70.96, 61.47, 52.84, 51.88, 39.71, 33.10, 32.07, 20.56, 19.70, 15.55, 13.46. Axial-OH epimer: ¹H NMR (400 MHz) δ 4.23 (s broad, 1 H), 3.71 (s, 3 H), 2.80–2.73 (m, 1 H), ¹³C NMR (50 MHz) δ 211.94, 170.59, 75.15, 62.39, 51.99, 51.27, 42.50, 33.84, 31.39, 21.32, 20.00, 19.72, 19.20, 13.91. Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 64.92; H, 8.41.

rac-5-Acetyl-2-hydroxy-8-oxobicyclo[3.2.1]octane (13a). Two isomers not separated: IR (neat) 3475, 2960, 1740, 1700 cm⁻¹. Equatorial-OH epimer: ¹H NMR (200 MHz) δ 4.12–4.05 (m, 1 H), 2.60–1.62 (m, 9 H), 2.15 (s, 3 H); ¹³C NMR (50 MHz) δ 213.13, 207.11, 73.89, 62.02, 54.60, 31.03, 27.57, 26.52, 26.26, 16.21. Axial-OH epimer: ¹H NMR (200 MHz) characteristic signals δ 4.37–4.30 (m, 1 H), 2.21 (s, 3 H); ¹³C NMR (50 MHz) δ 214.10, 207.23, 77.37, 62.31, 52.40, 33.81, 27.45, 25.23, 24.31, 18.94. Anal. Calcd for C₁₀H₁₄O₃: C, 65.92; H, 7.74. Found: C, 65.90; H, 7.73.

rac-5-Acetyl-2-hydroxy-4-(axial)-methyl-8-oxobicyclo-[3.2.1]octane (14a). Equatorial-OH epimer: IR (neat) 3470, 2970, 1735, 1680 cm⁻¹; ¹H NMR (200 MHz) δ 4.30–4.20 (m, 1 H), 2.57–2.54 (m, 2H), 2.32–2.04 (m, 2 H), 2.19 (s, 3 H), 1.98-

1.64 (m, 5 H), 0.81 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 212.52, 207.19, 71.49, 65.80, 55.07, 35.97, 33.54, 29.31, 28.10, 16.51, 16.00. **Axial-OH epimer**: IR (neat) 3470, 2970, 1735, 1690 cm⁻¹; ¹H NMR (200 MHz) δ 4.40–4.30 (m, 1 H), 2.20 (s, 3H), 1.05 (d, J = 7.2 Hz, 3 H); ¹³C NMR (50 MHz) δ 214.36, 207.41, 79.82, 66.91, 53.39, 42.62, 32.03, 28.43, 28.15, 19.54, 16.40. Anal. Calcd for C₁₁H₁₆O₃: C, 67.32; H, 8.22. Found: C, 67.30; H, 8.25.

rac-5-Acetyl-2-(equatorial)-hydroxy-4-(equatorial)methyl-8-oxobicyclo[3.2.1]octane (14b). Detected in the crude by the following characteristic signals: ¹H NMR (200 MHz) δ 4.11-4.06 (m, 1 H), 2.32 (s, 3 H), 0.86 (d, J = 7.3 Hz, 3 H).

Methyl rac-4-(axial)-Ethyl-2-(equatorial)-hydroxy-3-(equatorial)-methyl-8-oxobicyclo[3.2.1]octanecarboxylate (15a). Major isomer in the crude: IR (neat) 3478, 2967, 1730, 1268 cm⁻¹; ¹H NMR (400 MHz) δ 3.72 (s, 3 H), 3.68 (dd, J = 10.3 and 3.6 Hz, 1 H), 2.51 (dd, J = 6.5 and 3.6 Hz, 1 H), 2.30-2.25 (m, 1 H), 2.08-1.95 (m, 4 H), 1.85-1.50 (m, 4 H), 1.12 (d, J = 6.4 Hz, 3 H), 0.96 (t, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 209.33, 172.55, 76.23, 61.18, 54.22, 52.07, 48.46, 34.43, 30.43, 21.47, 16.21, 15.55, 13.78. Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.39. Found: C, 65.00; H, 8.37.

Methyl rac-(2S,3R,8S)-2-hydroxy-12-oxotricyclo-[7.2.1.0^{3,8}]dodecanecarboxylate (16a): $R_f 0.1$ (ethyl ether/ pentane, 9/1); IR (neat) 3479, 2934, 1732, 1269 cm⁻¹; ¹H NMR (200 MHz) δ 4.09 (dd, J = 10.5 and 3.4 Hz, 1 H), 3.71 (s, 3 H), 2.54 (dd, J = 6.8 and 3.5 Hz, 1 H), 2.36-2.14 (m, 4 H), 2.08-1.94 (m, 4 H), 1.92-1.72 (m, 2 H), 1.60-1.50 (m, 2 H), 1.49-1.18 (m, 2 H); ¹³C NMR (50 MHz) δ 209.21, 171.90, 70.68, 59.96, 54.15, 51.95, 44.13, 35.60, 30.39, 25.91, 24.99, 24.64, 20.62, 16.06. Anal. Calcd for C₁₄H₂₀O₄: C, 60.30; H, 7.53. Found: C, 60.28; H, 7.31.

Methyl rac-2-(equatorial)-Hydroxy-4-(axial)-phenyl-8oxobicyclo[3.2.1]octanecarboxylate (17a). Obtained diastereoselectivly (>90/10) by addition of Kryptofix 222: ¹H NMR (200 MHz) δ 7.25–7.19 (m, 5 H), 4.24–4.10 (m, 1 H), 4.05 (dd, J = 10.9 and 3.6 Hz, 1 H), 3.55 (s, 3 H), 2.69 (dd, J = 6.4 Hz and 3.2 Hz, 1 H), 2.59–1.73 (m, 6 H); ¹³C NMR (50 MHz) δ 209.44, 171.23, 141.69, 128.02, 127.73, 126.35, 70.77, 65.53, 54.21, 51.71, 49.18, 33.59, 31.57, 14.94.

Methyl rac-2-(axial)-Hydroxy-4-(equatorial)-phenyl-8oxobicyclo[3.2.1]octanecarboxylate (17b): mp 46–48 °C; R_f 0.2 (ethyl ether/pentane, 9/1); IR (CCl₄) 3500, 3040, 2960, 1760, 1730, 1600 cm⁻¹; ¹H NMR (200 MHz) δ 7.24–7.09 (m, 5 H), 4.28–4.20 (m, 1 H), 3.98 (dd, J = 4.8 Hz, 1 H), 3.55 (s, 3 H), 2.62–1.88 (m, 7 H), 1.87–1.69 (m, 1 H); ¹³C NMR (50 MHz) δ 210.29, 169.58, 139.84, 128.11, 127.73, 126.35, 74.06, 62.15, 51.70, 51.24, 47.33, 32.90, 20.35, 19.02. Anal. Calcd for C₁₆H₁₈O₄: C, 70.06; H, 6.61. Found: C, 70.07; H, 6.58.

Methyl *rac*-2-Hydroxy-4-(equatorial)-o-anisyl-8-oxobicyclo[3.2.1]octanecarboxylate (18b). Equatorial-OH epimer: ¹³C NMR (50 MHz) δ 209.83, 170.57, 156.69, 129.09, 125.76, 127.54, 120.02, 110.67, 70.96, 60.69, 55.20, 54.01, 51.88, 39.00, 33.61, 23.14, 16.64. Axial-OH epimer: IR (neat) 3480, 2954, 1741, 1727, 1245, 912, 732 cm⁻¹; ¹H NMR (200 MHz) δ 7.21-7.05 (m, 2 H), 6.85-6.82 (m, 2 H), 4.37 (dd, J = 13.1 and 4.4 Hz, 1 H), 4.30-4.20 (m, 1 H), 3.81 (s, 3 H), 3.52 (s, 3 H), 2.62 (dd, J = 8.3 and 5.5 Hz, 1 H), 2.55-2.25 (m, 3 H), 2.24-1.86 (m, 3 H), 1.73-1.61 (m, 1 H); ¹³C NMR (50 MHz) δ 210.51, 170.50, 156.59, 129.66, 127.46, 125.92, 120.17, 110.72, 74.75, 61.26, 55.20, 52.22, 52.05, 40.95, 32.80, 21.83, 19.54. Anal. Calcd for C₁₇H₂₀O₅: C, 67.09; H, 6.62. Found: C, 67.05; H, 6.62.

Methyl *rac*-2-(equatorial)-Hydroxy-4-(axial)-furyl-8oxobicyclo[3.2.1]octanecarboxylate (19a): 13 C NMR (50 MHz) δ 209.35, 169.80, 152.74, 142.12, 110.24, 107.38, 70.91, 61.23, 53.34, 52.39, 40.29, 31.24, 30.82, 16.01.

Methyl *rac*-2-Hydroxy-4-(equatorial)-furyl-8-oxobicyclo-[3.2.1]octanecarboxylate (19b). Equatorial-OH epimer: IR (CDCl₃) 3486, 2956, 1729, 1277, 908 cm⁻¹; ¹H NMR (200 MHz) δ 7.29–7.24 (m, 1 H), 6.27–6.19 (m, 1 H), 6.07–6.02 (m, 1 H), 4.47–4.39 (m, 1 H), 4.16 (dd, J = 12.2 and 5.3 Hz, 1 H), 3.74 (s, 3 H), 3.70 (s, 3 H), 2.68–1.69 (m, 5 H); ¹³C NMR (50 MHz) δ 207.51, 171.35, 153.59, 141.36, 110.24, 107.02,

J. Org. Chem., Vol. 60, No. 21, 1995 6881

71.29, 57.34, 54.53, 52.99, 41.76, 31.65, 21.87, 15.64. Axial-OH epimer: ¹H NMR (200 MHz) δ characteristic signals 4.38–4.25 (m, 1 H);¹³C NMR (50 MHz) δ 209.98, 169.80, 152.74, 142.12, 110.24, 107.38, 74.38, 61.78, 52.33, 51.40, 42.20, 30.85, 20.85, 19.29. Anal. Calcd for C₁₄H₁₆O₅: C, 63.63; H, 6.10. Found: C, 63.60; H, 6.11.

Preparation and Cleavage of Bicyclo[3.2.1]octanedione 25. Bicyclic diketones **25a,b** were obtained by low temperature (-30 °C) Jones oxidation⁴⁶ of the corresponding ketols **3a** and **17b. Cleavage**: To an ice cold solution of diketones **25** (1 mmol) in anhydrous MeOH (5 mL) was added K₂CO₃ (1 mmol), and the heterogeneous mixture was stirred under nitrogen at room temperature until no more starting material was visible on TLC. After completion, the mixture was then filtered through a short pad of Celite and the filtrate concentrated under reduced pressure to give the crude acyclic derivatives **27a,b**,⁵¹ which were purified by flash chromatography on silica gel using Et₂O/pentane as eluant.

Methyl rac-2,8-Dioxobicyclo[3.2.1]octanecarboxylate (25a) (35% from 3a): mp 80-82 °C; R_f 0.1 (ethyl ether/ pentane, 1/1); IR (CCl₄) 2950, 1760, 1740, 1725 cm⁻¹; ¹H NMR (200 MHz) δ 3.80 s, 3 H), 3.30 (d, J = 3.3 Hz, 1 H), 2.90-2.40 (m, 4 H), 2.40-1.90 (m, 4 H); ¹⁸C NMR (50 MHz) δ 204.31, 202.11, 170.43, 64.30, 54.40, 52.46, 33.8, 27.38, 26.18, 21.58. Anal. Calcd for C₁₀H₁₂O₄: C, 61.22; H, 6.16. Found: C, 61.22; H, 6.16.

Methyl *rac*-4-(equatorial)-Phenyl-2,8-dioxobicyclo-[3.2.1]octanecarboxylate (25b) (60% from 17b): R_f 0.1 (ethyl ether/pentane, 1/1); IR (neat) 2959, 1726, 1776, 1275 cm⁻¹; ¹H NMR (200 MHz) δ 7.20 (m, 4 H), 6.96 (dd, J= 3.6 and 7.7 Hz, 1 H), 3.76 (d, J = 9.2 Hz, 1 H), 3.63 (s, 3 H), 3.46 (d, J = 6.58 Hz, 1 H), 3.31 (dd, J = 9.1 and 16.8 Hz, 1 H), 2.67 (d, J = 17.0 Hz, 1 H), 2.57–2.15 (m, 4 H); ¹³C NMR (50 MHz) δ 205.92, 199.82, 170.08, 139.50, 128.26, 128.11, 127.63, 65.76, 60.03, 52.15, 44.63, 41.20, 30.19, 21.65. Anal. Calcd for C₁₆H₁₆O₄: C, 70.58; H, 5.92. Found: C, 60.28; H, 7.31.

Dimethyl 4-[(Methyloxy)carbonyl]-3-phenyloctanedioate (27b). Two isomers (1/1): IR (neat) 2956, 1735, 1438, 1260, 1156 cm⁻¹; ¹H NMR (200 MHz) δ 7.27–7.20 (m, 5 H), 3.70/3.63/3.56/3.52/3.46/3.43 (s, 9 H), 3.40–3.25 (m, 1 H), 2.63–2.13 (m, 2 H), 2.20–2.13 (m, 2 H), 1.57–1.10 (m, 5 H); ¹³C NMR (50 MHz) δ 175.21/174.27/173.55/172.34, 140.95, 128.66/128.36/127.92/127.16/127.09, 51.81/51.56, 51.05/44.40/43.98, 39.36/37.63/33.73/33.63/29.09/22.70/22.74. Anal. Calcd for C₁₈H₂₄O₆: C, 64.27; H, 7.19. Found: C, 64.25; H, 7.22.

rac-2-Hydroxy-6-(ethoxycarbonyl)bicyclo[3.2.1]octan-8-one Ethylene Ketal (28). Two isomers (1.5/1): R_f 0.26 (ethyl ether/pentane, 9/1); IR (neat) 3520, 2900, 1720, 1275 cm⁻¹; ¹H NMR (200 MHz) δ 4.20–3.80 (m, 6 H), 2.55–1.50 (m, 10 H), 1.30–1.15 (m, 4 H); ¹³C NMR (50 MHz) δ 173.69, 173.14, 116.56, 116.13, 73.40, 66.61, 64.17, 64.11, 66.08, 66.04, 65.72, 65.47, 60.29, 60.17, 51.99, 51.77, 46.84, 44.99, 29.92, 29.13, 26.14, 26.11, 25.77, 21.67, 17.73, 13.97; MS m/e (relative intensity): $C_{13}H_{20}O_5$ M⁺ 256 (3), 238 (86), 211 (33), 128 (41), 99 (100), 55 (37), 28 (37); HRMS: calcd 256.13106, obsd 256.13230.

Preparation and Cleavage of Tosylates 29, 31, and 33. Tosylation of equatorial-ketones **8a** and **16a** and axial-ketol **3a** under standard conditions⁵² gave the corresponding tosylates **29, 31**, and **33** in 95, 98, and 60% yield, respectively, after FC on silica gel. **Cleavage.** Cycloheptenes **30, 32**, and **35** were obtained by reaction of the corresponding tosylates **29, 31**, and **33** following the procedure previously described for the ring cleavage of diketones **25** (vide supra).

Methyl (2S,4S,6R)-4,6-Dimethyl-2-*p*-tosyl-8-oxobicyclo-[3.2.1]octanecarboxylate (29): R_f 0.61 (ethyl ether/pentane, 1/1); IR (neat) 2960, 1760, 1730, 1600, 730 cm⁻¹; ¹H NMR (200 MHz) δ 7.74 (d, J = 8.2 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H), 4.71-4.68 (m, 1 H), 3.69 (s, 3 H), 3.70 (s, 3 H), 2.65-2.20 (m, 6 H), 2.20-2.00 (m, 2 H), 1.90-1.75 (m, 1 H), 1.35-1.15 (m, 2 H), 0.92 (d, J = 5.9Hz, 3 H), 0.79 (d, J = 7.1 Hz, 3 H); ¹³C NMR (50 MHz) δ 205.39, 169.46, 144.94, 133.44, 128.91, 127.31, 79.54, 63.66, 52.56, 51.45, 36.80, 36.28, 31.24, 26.28, 21.38, 20.52, 16.47. Anal. Calcd for $C_{19}H_{24}O_6S$: C, 59.98; H, 6.36; S, 8.43. Found: C, 59.94; H, 6.31; S, 8.40.

Dimethyl cis-4,6-dimethyl-1-cycloheptene-5,5-dicarboxylate (30) (60% from 29): $R_f 0.66$ (ethyl ether/pentane, 1/1); IR (neat) 2980, 1730, 1250, 1200 cm⁻¹; ¹H NMR (400 MHz) δ 5.60 (dd, J = 2.3 and 4.1 Hz, 2 H), 3.68 (s, 3 H), 3.65 (s, 3 H), 2.39-2.30 (ddd, J = 1.3, 10.3 and 15.3 Hz, 3 H), 2.30-2.10 (m, 2 H), 2.13-2.06 (dm, J = 15.3 Hz, 2 H), 1.05 (d, J = 6.9 Hz, 6 H); ¹³C NMR (50 MHz) δ 173.09, 170.39, 129.61, 144.94, 66.57, 52.00, 51.28, 40.16, 33.75, 20.35. Anal. Calcd for C₁₃H₂₀O₄: C, 64.98; H, 8.34. Found: C, 65.00; H, 8.31.

Methyl rac-(2S,3R,8S)-2-p-tosyl-12-oxotricyclo[7.2.1.0^{3.8}]dodecanecarboxylate (31): R_f 0.60 (ethyl ether/pentane, 9/1); IR (neat) 2932, 1734, 1452, 1174 cm⁻¹; ¹H NMR (200 MHz) δ 7.78 (d, J = 8.4 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 2 H), 4.70 (dd, 3.8 and 10.3 Hz, 1 H), 3.69 (s, 3 H), 2.70 (dd, J = 3.4 and 6.6 Hz, 1 H), 2.43 (m, 3 H), 2.29–2.09 (m, 4 H), 2.04–1.94 (m, 2 H), 1.90–1.65 (m, 4 H), 1.23–1.11 (m, 4 H); ¹³C NMR (50 MHz) δ 205.694, 171.20, 145.17, 133.46, 129.80, 127.87, 80.17, 59.71, 52.22, 51.25, 43.07, 34.21, 29.99, 25.60, 25.00, 24.45, 21.65, 20.21, 16.60. Anal. Calcd for C₂₁H₂₆O₆S: C, 62.05; H, 6.45, S, 7.89. Found: C, 61.99; H, 6.48; S, 7.80.

rac-Dimethyl cis-bicyclo[5.4.0]undecene-6,6-dicarboxylate (32) (92% from 31): R_f 0.60 (ethyl ether/pentane, 9/1); IR (neat) 2932, 1729, 1638, 910, 736 cm⁻¹; ¹H NMR (200 MHz) δ 5.82-5.75 (m, 1 H), 5.37-5.31 (m, 1 H), 3.70 (s, 3 H), 3.66 (s, 3 H), 3.16 (s broad, 1 H), 2.45-2.08 (m, 4 H), 1.95-1.19 (m, 14 H), 0.96-0.89 (m, 1 H); ¹³C NMR (50 MHz) δ 172.10, 171.85, 135.14, 130.29, 63.20, 52.59, 52.40, 43.25, 35.25, 34.00, 27.39, 26.70, 24.37, 24.05, 21.42. Anal. Calcd for C₁₅H₂₂O₄: C, 67.65; H, 8.33. Found: C, 67.64; H, 8.31.

Methyl rac-2(R)-p-tosyl-8-oxobicyclo[3.2.1]octanecarboxylate (33): mp 95–97 °C; IR (neat) 2960, 1760, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 7.85 (d, J = 9.0 Hz, 2 H), 7.77 (d, J =9.0 Hz, 2 H), 3.72 (s, 3 H), 2.74–2.43 (m, 4 H), 1.97–1.95 (m, 2 H), 1.54 (s, 3 H), 1.31–1.23 (m, 3 H). Anal. Calcd for C₁₇H₂₀O₆S: C, 57.94; H, 5.72; S, 9.10. Found: C, 57.95; H, 5.72; S, 9.12.

rac-1,5-Bis[(methyloxy)carbonyl]-1-cycloheptene (35) (100% from 33): IR (neat) 3160, 2940, 1710, 1660 cm⁻¹; ¹H NMR (200 MHz) δ 7.10 (m, 1 H), 3.68 (s, 3 H), 3.62 (s, 3 H), 2.81–2.77 (m, 1 H), 2.65–2.21 (m, 3 H), 2.04–1.54 (m, 5 H); ¹³C NMR (50 MHz) δ 180.73, 166.35, 143.53, 135.66, 53.45, 52.08, 46.67, 33.68, 27.74, 27.36, 26.40. Anal. Calcd for $C_{11}H_{16}O_4$: C, 62.25; H, 7.60. Found: C, 62.20; H, 7.62.

General Procedure for the Preparation of Cycloheptanols 36-42 (see Table 4). To an ice cold solution of the corresponding ketols (1 mmol) in anhydrous MeOH (5 mL) was added the appropriate base (1 mmol), and the mixture was stirred under argon at the selected temperature until completion of the reaction (TLC). Depending on the nature of the base, a simple filtration (K_2CO_3) followed by concentration under reduced pressure, or a standard workup (DBU), gave the crude cycloheptanols 36-42, which were purified by FC on Et₃N deactivated silica gel.

rac-(2*S*,5*R*)-Bis[(methyloxy)carbonyl]cycloheptan-1ol (36). Two hydroxy epimers not separated: $R_f 0.40$ (ethyl ether/pentane, 7/3); IR (neat) 3500, 2950, 2890, 1730 cm⁻¹; ¹H NMR (200 MHz) δ 3.95 (m, 1 H), 3.75 (s, 3 H), 3.65 (s, 3 H), 3.35, (m, 1 H), 2.80–2.20 (m, 2 H), 2.20–1.52 (m, 8 H); ¹³C NMR (50 MHz) δ 176.61, 176.23, 175.77, 175.63, 73.52, 69.39, 53.16, 50.61, 51.68, 51.65, 51.51, 51.46, 44.29, 43.16, 33.72, 31.34, 29.19, 27.45, 24.98, 23.88, 24.02, 22.91. Anal. Calcd for C₁₁H₁₈O₅: C, 57.38; H, 7.88. Found: C, 57.41; H, 7.88.

rac-(2S,5R)-2,5-Bis[(methyloxy)carbonyl]-2-methylcycloheptan-1-ol (37). Two hydroxy epimers not separated: IR (neat) 3445, 2930, 1735, 1457, 1260 cm⁻¹; ¹H NMR (200 MHz) δ 4.90–4.08 (m, 1 H), 3.70 (s, 3 H), 3.63 (s, 3 H), 2.48–1.63 (m, 6 H), 1.47–1.18 (m, 4H), 1.16 (s, 3 H); ¹³C NMR (50 MHz) δ 178.83, 176.50, 75.59, 52.34, 51.78, 50.00, 45.99, 33.46, 30.40, 28.25, 25.02, 11.10. Anal. Calcd for C₁₂H₂₀O₅: C, 59.00; H, 8.25. Found: C, 59.02; H, 8.20.

rac-(2S,5R)-5-Acetyl-2-[(methyloxy)carbonyl]cycloheptan-1-ol (38). Two hydroxy epimers not separated: R_f 0.26 (ethyl ether/pentane, 9/1); IR (neat) 3450, 2940, 2880, 1740, 1720 cm⁻¹; ¹H NMR (200 MHz) δ 4.05–3.80 (m, 1 H), 3.70 (s,

⁽⁵¹⁾ Compound **27a** has been previously described in ref 47.
(52) Kabalka, G. W.; Varma, R. S. J. Org. Chem. **1986**, 51, 2386.

3 H), 2.65–1.40 (m, 11 H), 1.30–1.15 (m, 3 H); ^{13}C NMR (50 MHz) δ 211.22, 175.93, 73.87, 72.84, 54.07, 52.20, 46.13, 32.57, 34.03, 28.45, 28.22, 26.57, 25.77, 24.28, 24.11, 23.14. Anal. Calcd for $C_{11}H_{18}O_4$: C, 61.66; H, 8.47. Found: C, 61.68; H, 8.53.

rac-(15,25,5*R*,6*R*)-2,5-Bis[(methyloxy)carbonyl]-6-methylcycloheptan-1-ol (39): mp 60-62 °C; R_f 0.21 (ethyl ether/pentane, 9/1); IR (neat) 3540, 2960, 2880, 1735 cm⁻¹; ¹H NMR (400 MHz) δ 3.94 (td, J = 9.8 and 2.5 Hz, 1 H), 3.63 (s, 3 H), 3.58 (s, 3 H), 2.32 (ddd, J = 9.8, 8.2 and 4.8 Hz, 1 H), 2.09 (dt, J = 10.4 and 5.3 Hz, 1 H), 1.98 (m, 1 H), 1.86-1.67 (m, 4 H), 1.67-1.56 (m, 2 H), 0.88 (d, J = 6.6 Hz, 3 H); ¹³C NMR (100 MHz) δ 176.51, 175.92, 73.01, 53.72, 51.76, 51.93, 51.63, 42.21, 31.95, 27.87, 23.94, 22.74. Anal. Calcd for C₁₂H₂₀O₅: C, 59.00; H, 8.25. Found: C, 59.00; H, 8.20.

rac-(1*S*,2*S*,5*R*,6*R*)-2,5-Bis[(methyloxy)carbonyl]-6-phenylcycloheptan-1-ol (40a): R_f 0.37 (ethyl ether/pentane, 9/1); IR (neat) 3443, 2946, 1731, 1443, 1163, 917, 734, 702 cm⁻¹; ¹H NMR (200 MHz) δ 7.29–7.10 (m, 5 H), 4.16 (dt, J = 2.8and 10 Hz, 1 H), 3.73 (s, 3 H), 3.43 (s, 3 H), 3.17 (dt, J = 1.7and 10.8 Hz, 1 H), 2.75–2.60 (m, 1 H), 2.58–2.47 (m, 1 H), 1.13–0.95 (m, 7 H); ¹³C NMR (50 MHz) δ 175.75, 175.61, 145.60, 128.54, 126.96, 126.52, 73.32, 53.70, 52.06, 51.52, 51.87, 43.48, 41.66, 27.97, 23.90. Anal. Calcd for C₁₇H₂₂O₅: C, 66.65; H, 7.24. Found: C, 66.68; H, 7.25.

rac-(1*R*,2*S*,5*R*,6*R*)-2,5-Bis[(methyloxy)carbonyl]-6-phenylcycloheptan-1-ol (40b): R_f 0.46 (ethyl ether/pentane, 9/1); IR (neat) 3508, 2949, 1729, 1441, 1199, 733, 702 cm⁻¹; ¹H NMR (200 MHz) δ 7.28-7.17 (m, 5 H), 4.45 (broad d, J = 7 Hz, 1 H), 3.75 (s, 3 H), 3.29 (s, 3 H), 3.12-3.11 (m, 2 H), 2.64-2.58 (m, 2 H), 2.45-2.16 (m, 3 H), 2.03-1.86 (m, 3 H); ¹³C NMR (50 MHz) δ 176.38, 176.61, 144.52, 128.18, 127.87, 126.37, 68.08, 52.15, 52.03, 51.05, 49.53, 38.64, 38.85, 27.92, 23.72. Anal. Calcd for C₁₇H₂₂O₅: C, 66.65; H, 7.24. Found: C, 66.68; H, 7.25.

rac-(1S,2S,5R,6R)-2,5-Bis[(methyloxy)carbonyl]-6-oanisylcycloheptan-1-ol (41a): R_f 0.14 (ethyl ether/pentane, 1/1); IR (neat) 3491, 2949, 1730, 1440, 1244, 914, 734 cm⁻¹; ¹H NMR (200 MHz) δ 7.19–7.05 (m, 2 H), 6.86–6.79 (m, 2 H), 4.12 (dt, J = 2.6 and 12 Hz, 1 H), 3.80 (s, 3 H), 3.72 (s, 3 H), 3.47–3.34 (m, 1 H), 3.44 (s, 3 H), 3.18–2.98 (m, 1 H), 2.47– 2.05 (m, 3 H), 1.97–1.83 (m, 5 H); ¹³C NMR (50 MHz) δ 176.86, 175.01, 156.81, 133.23, 128.45, 127.54, 120.41, 110.84, 73.79, 55.22, 54.19, 51.94, 51.38, 48.04, 40.49, 39.16, 27.99, 23.60. Anal. Calcd for $C_{18}H_{24}O_6:\ C, 64.27;\ H, 7.19.$ Found: C, 64.21; H, 7.21.

rac-(1R,2S,5R,6R)-2,5-Bis[(methyloxy)carbonyl]-6-oanisylcycloheptan-1-ol (41b): mp 82–84 °C; R_f 0.17 (ethyl ether/pentane, 1/1); IR (neat) 3384, 2952, 1727, 1596, 1422, 1244, 881, 756 cm⁻¹; ¹H NMR (200 MHz) δ 7.16 (dt, J = 1.5and 7.5 Hz, 1 H), 7.03 (dd, J = 1.7 and 7.5 Hz, 1 H), 6.87– 6.98 (m, 2 H), 4.44 (d broad, J = 6.1 Hz, 1 H), 4.15 (ddd, J =1.8 and 6.3 Hz, 1 H), 3.81 (s, 3 H), 3.71 (s, 3 H), 3.21 (s, 3 H), 3.12 (ddd, J = 6.6, 6.4 and 3.0 Hz, 1 H), 2.97 (s broad, 1 H), 2.62 (dt, J = 10.9 and 2.9 Hz, 1 H), 2.51 (ddd, J = 13.0, 11.2 and 1.0 Hz, 1 H), 2.26–2.06 (m, 3 H), 2.01–1.83 (m, 2 H); ¹³C NMR (50 MHz) δ 176.23, 176.07, 156.47, 133.00, 127.97, 127.16, 120.20, 110.10, 67.98, 55.43, 52.35, 51.96, 50.88, 46.66, 34.82, 30.04, 28.63, 22.78. Anal. Calcd for C₁₈H₂₄O₆: C, 64.27; H, 7.19. Found: C, 64.25; H, 7.18.

rac-(1S,2S,5R,6R)-2,5-Bis[(methyloxy)carbonyl]-6-furylcycloheptan-1-ol (42a): R_f 0.33 (ethyl ether/pentane, 9/1); IR (neat) 3463, 2949, 1730, 1440, 1165, 1019 cm⁻¹; ¹H NMR (200 MHz) δ 7.26 (dd, J = 0.7 and 1.75 Hz, 1 H), 6.21 (dd, J =1.9 and 3.2 Hz, 1 H), 5.96 (d broad, J = 3.2 Hz, 1 H), 4.12 (dt, J = 3.0 and 10.1 Hz, 1 H), 3.71 (s, 3 H), 3.58 (s, 3 H), 3.37 (dt, J = 2.3 and 10.45 Hz, 1 H), 2.85–2.75 (m, 2 H), 2.50–2.39 (m, 1 H), 2.19–1.83 (m, 5 H), 1.65 (s broad, 1 H); ¹³C NMR (50 MHz) δ 175.58, 175.54, 157.34, 141.17, 109.82, 104.16, 72.86, 53.68, 51.86, 51.71, 48.27, 38.75, 36.40, 27.36, 23.61. Anal. Calcd for C₁₅H₂₀O₆: C, 60.80; H, 6.80. Found: C, 60.77; H, 6.82.

rac-(1*R*,2*S*,5*R*,6*R*)-2,5-Bis[(methyloxy)carbonyl]-6-furylcycloheptan-1-ol (42b): R_f 0.50 (ethyl ether/pentane, 9/1); IR (neat) 3508, 2950, 1739, 1440, 1199, 1016 cm⁻¹; ¹H NMR (200 MHz) δ 7.27 (dd, J = 0.9 and 1.71 Hz, 1 H), 6.22 (dd, J = 3.2 and 1.9 Hz, 1 H), 5.96 (d broad, J = 3.3 Hz, 1 H), 4.42–4.38 (m, 1 H), 3.83–3.60 (m, 1 H); 3.70 (s, 3 H), 3.48 (s, 3 H), 3.22–3.11 (m, 2 H), 2.62–2.57 (m, 1 H), 2.29–2.21 (m, 3 H), 1.97–1.82 (m, 3 H); ¹³C NMR (50 MHz) δ 176.35, 175.21, 157.03, 141.11, 109.97, 105.23, 68.00, 51.96, 51.47, 51.26, 47.31, 34.29, 33.98, 26.60, 24.40. Anal. Calcd for C₁₅H₂₀O₆: C, 60.80; H, 6.80. Found: C, 60.77; H, 6.82.

JO950687J